Какие из следующих утверждений верны?
1) Около всякого треугольника можно описать не более одной окружности.
2) В любой треугольник можно вписать не менее одной окружности.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Около всякого треугольника можно описать не более одной окружности.» — верно, oколо треугольника можно описать окружность, притом только одну.
2) «В любой треугольник можно вписать не менее одной окружности.» — верно, в любой треугольник можно вписать окружность.
3) «Центром окружности, описанной около треугольника, является точка пересечения биссектрис.» — неверно, центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника.
4) «Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.» — неверно, центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника.
Ответ: 12.
Примечание.
Выражение «не более одной» означает, что окружностей не может быть больше одной. Выражение «не менее одной» означает, что окружностей не может быть меньше одной. В частности, «ровно одна окружность» удовлетворяет как условию «не более одной», так и условию «не менее одной».
Утверждение «В любой треугольник можно вписать не менее одной окружности» можно сформулировать так: «В любой треугольник можно вписать хотя бы одну окружность». Если бы это утверждение было неверным, это означало бы, что существуют треугольники, в которые нельзя вписать хотя бы одну окружность, но таких треугольников не существует, поэтому утверждение является верным.



