математика
Математика
Информатика
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 26 № 314941

Ос­но­ва­ние AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC равно 18. Окруж­ность ра­ди­у­са 12 с цен­тром вне этого тре­уголь­ни­ка ка­са­ет­ся про­дол­же­ния бо­ко­вых сто­рон тре­уголь­ни­ка и ка­са­ет­ся ос­но­ва­ния AC в его се­ре­ди­не. Най­ди­те ра­ди­ус окруж­но­сти, впи­сан­ной в тре­уголь­ник ABC.

Решение.

Введём обозначения, приведённые на рисунке. Лучи и — со­от­вет­ствен­но бис­сек­три­сы углов и , по­сколь­ку эти лучи про­хо­дят через цен­тры впи­сан­ных окружностей. — се­ре­ди­на ос­но­ва­ния сле­до­ва­тель­но Углы и равны друг другу, как углы с вза­им­но пер­пен­ди­ку­ляр­ны­ми сторонами. Рас­смот­рим тре­уголь­ни­ки и — они пря­мо­уголь­ные и имеют рав­ные углы и , сле­до­ва­тель­но эти тре­уголь­ни­ки подобны:

 

 

Отсюда следует, что ра­ди­ус впи­са­ной окружности:

 

Ответ:6,75.

Источник: Банк заданий ФИПИ