СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 26 № 156

Медиана BM тре­уголь­ни­ка ABC яв­ля­ет­ся диа­мет­ром окружности, пе­ре­се­ка­ю­щей сто­ро­ну BC в её середине. Длина сто­ро­ны AC равна 4. Най­ди­те ра­ди­ус опи­сан­ной окруж­но­сти тре­уголь­ни­ка ABC.

Решение.

Медиана BM делит AC пополам. Центр окружности лежит на середине медианы BM, тогда ON — средняя линия в треугольнике BMC, где O — центр окружности, а N — точка пересечения этой окружности стороны BC. Средняя линия в треугольнике равна половине основания, поэтому ON = 1. Средняя линия ON является радиусом окружности. Так как медиана BM является диаметром, то BM = 2ON = 2. Проведем MN в треугольнике BMC. Так как угол BNM опирается на диаметр BM, то таким образом, треугольник BNM — прямоугольный. Так как MN — средняя линия, то она параллельна AB, тогда треугольник ABC — прямоугольный. Центр описанной вокруг прямоугольного треугольника окружности лежит на середине гипотенузы, таким образом, радиус описанной вокруг треугольника ABC окружности равен 2.


Аналоги к заданию № 156: 314847 315103 Все

Источник: ГИА по математике 28.05.2013. Основная волна. Вариант 1313.