Тип 24 № 316360 

Геометрические задачи на доказательство. Окружности и их элементы
i
В окружности через середину O хорды AC проведена хорда BD так, что дуги AB и CD равны. Докажите, что O — середина хорды BD.
Решение. 
Вписанные углы ADB, CBD , ACB и DAC опираются на равные дуги, значит, они равны.
Получаем, что треугольники СOВ и AOD подобны по двум углам; их коэффициент подобия равен AO:OC. Поскольку AO = OC , эти треугольники равны, следовательно, BO = OD.
Критерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Доказательство верное, все шаги обоснованы | 2 |
| Доказательство в целом верное, но содержит неточности | 1 |
| Другие случаи, не соответствующие указанным критериям | 0 |
| Максимальный балл | 2 |