СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 26 № 353447

Четырёхугольник ABCD со сто­ро­на­ми AB = 2 и CD = 5 впи­сан в окружность. Диа­го­на­ли AC и BD пе­ре­се­ка­ют­ся в точке K, причём ∠AKB=60°. Най­ди­те ра­ди­ус окружности, опи­сан­ной около этого четырёхугольника.

Решение.

Проведём через точку прямую, параллельную диагонали Дуги и равны, следовательно, равны и стягивающие их хорды:

Вертикальные углы и равны. Углы и равны как накрест лежащие:

Четырёхугольник вписан в окружность, следовательно, суммы противолежащих углов равны 180°, откуда

Рассмотрим треугольник По теореме косинусов:

 

 

Найдём радиус описанной вокруг треугольника окружности по теореме синусов:

 

 

Ответ: