СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 26 № 339373

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 28.

Решение.

Введём обозначения, как показано на рисунке. Поскольку и получаем, что HKOL — параллелограмм, следовательно, углы KHL и KOL равны. Рассмотрим треугольники ABC и EBF, угол EBF — общий, углы BEFи BAC равны как соответственные при параллельных прямых, углы BFE и BCA — аналогично, следовательно, треугольники ABC и BEF подобны по двум углам. Откуда Аналогично подобны треугольники ABD и AEH, откуда Пусть сторона ромба равна a, а длина короткой диагонали равна d. Сложим два полученных уравнения:

 

Площадь ромба можно найти как произведение сторон на синус угла между ними: Площадь параллелограмма можно найти как половину произведения диагоналей на синус угла между ними: Найдём отношение площадей ромба и параллелограмма:

Ответ:

Раздел кодификатора ФИПИ: Подобие