Точка K — середина боковой стороны CD трапеции ABCD. Докажите, что площадь треугольника KAB равна половине площади трапеции.
Продолжим BK до пересечения с прямой AD в точке F. Заметим, что в треугольниках FDK и BCK стороны CK и DK равны по условию, углы при вершине K равны как вертикальные, а углы KDF и KCB равны как накрест лежащие. Значит, треугольники FDK и BCK равны.
Следовательно, их площади равны, то есть площадь трапеции равна площади треугольника ABF. Но из равенства треугольников также вытекает, что FK = BK, то есть AK — медиана в треугольнике ABF. Тогда треугольник KAB по площади составит половину треугольника FAB, а значит, и данной трапеции.
----------
Дублирует задание 341396