СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 17 № 339429

Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC = 15° и ∠OAB = 8°. Найдите угол BCO. Ответ дайте в градусах.

Решение.

Проведём радиус OB. Рассмотрим треугольник AOB: AO = OB, следовательно, углы ∠OAB = ∠ABO = 8°. Рассмотрим треугольник BOC: BO = OC, следовательно, ∠BCO = ∠OBC = ∠ABC − ∠ABO = 15° − 8° = 7°.

 

Ответ: 7.

 

Приведём другое решение.

Угол ABC — вписанный, поэтому он равен половине дуги, на которую опирается. Следовательно, величина дуги ADC равна 30°. Дуги ADC и ABC вместе составляют полную окружность, поэтому дуга ABC равна 360° − 30° = 330°. Рассмотрим угол AOC четырёхугольника AOCB, он центральный, опирается на дугу ABC, поэтому он равен 330°. Сумма углов четырёхугольника равна 360°, откуда ∠ BCO = 360° − ∠ AOC − ∠ ABC − ∠ OAB = 360° − 330° − 15° − 8° = 7°.

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.