СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Задания
Версия для печати и копирования в MS Word
Задание 17 № 339419

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 38°. Найдите угол NMB. Ответ дайте в градусах.

Решение.

Угол NBA — вписанный, поэтому он равен половине дуги, на которую он опирается. Следовательно, дуга AN = 2∠NBA = 2 · 38° = 76°. Диаметр AB делит окружность на две равные части, поэтому величина дуги ANB равна 180°. Откуда дуга NB = 180° − 76° = 104°. Угол NMB — вписанный, поэтому он равен половине дуги, на которую он опирается, то есть равен 104°/2 = 52°.

 

Ответ: 52.

Раздел кодификатора ФИПИ: 5.1 Планиметрия. Нахождение геометрических величин.