№№ заданий Пояснения Ответы Ключ Добавить инструкцию Критерии
Источник Предметная область Раздел кодификатора ФИПИ
PDF-версия PDF-версия (вертикальная) PDF-версия (крупный шрифт) PDF-версия (с большим полем) Версия для копирования в MS Word
Задания
Задание 24 № 128

В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 4.

Решение.

Так как AB = CD, то трапеция является равнобедренной. Опустим перпендикуляр BL из точки B на большее основание AD. Прямоугольные треугольники ABL и CHD равны по гипотенузе и прилежащему острому углу, поэтому AL = HD. Средняя линия равна полусумме оснований:

 

 

Так как AL = HD, имеем: , значит,

 

Ответ: HD = 12.