СДАМ ГИА: РЕШУ ОГЭ
Образовательный портал для подготовки к экзаменам
Математика
математика
сайты - меню - вход - новости


Вариант № 31243395

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 366647

Для станций, указанных в таблице, определите, какими цифрами они обозначены на схеме. Заполните таблицу, в ответ запишите последовательность четырёх цифр.

 

СтанцииВесёлаяВетренаяЗвёзднаяПтичья
Цифры

Показать


Ответ:

2
Задание 2 № 366648

Бригада меняет рельсы на участке между станциями Надежда и Верхняя протяжённостью 12,4 км. Работы начались в понедельник. Каждый рабочий день бригада меняла по 400 метров рельсов. По субботам и воскресеньям замена рельсов не осуществлялась, но проезд был закрыт до конца всего ремонта. Сколько дней был закрыт проезд между указанными станциями?


Показать


Ответ:

3
Задание 3 № 366649

Территория, находящаяся внутри кольцевой линии, называется Центральным городским районом. Найдите его площадь S (в км2), если длина кольцевой ветки равна 40 км. В ответе укажите значение выражения S · π.


Показать


Ответ:

4
Задание 4 № 366650

Найдите расстояние (в км) между станциями Смородиновая и Хоккейная, если длина Радужной ветки равна 17 км, расстояние от Звёздной до Смородиновой равно 10 км, а от Быстрой до Хоккейной — 12 км. Все расстояния даны по железной дороге.


Показать


Ответ:

5
Задание 5 № 366651

Школьник Антон в среднем в месяц совершает 45 поездок в метро. Для оплаты поездок можно покупать различные карточки. Стоимость одной поездки для разных видов карточек различна. По истечении месяца Антон уедет из города и неиспользованные карточки обнуляются. Во сколько рублей обойдётся самый дешёвый вариант?

 

Количество поездокСтоимость карточки
(руб.)
Дополнительные условия
140школьникам скидка 15%
10370школьникам скидка 10%
301050школьникам скидка 10%
501600нет
Не ограничено2000нет

Показать


Ответ:

6
Задание 6 № 203741

Запишите в ответе номера верных равенств.

Номера запишите в порядке возрастания без пробелов, запятых и других дополнительных символов.

1) 2) 3) 4)

Ответ:

7
Задание 7 № 317132

Какому из данных промежутков принадлежит число 

В ответе укажите номер правильного варианта.

 

1) [0,5;0,6]

2) [0,6;0,7]

3) [0,7;0,8]

4) [0,8;0,9]


Ответ:

8
Задание 8 № 353569

Найдите значение выражения при


Ответ:

9
Задание 9 № 338805

Решите уравнение


Ответ:

10
Задание 10 № 316328

Петя, Вика, Катя, Игорь, Антон, Полина бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.


Ответ:

11
Задание 11 № 193093

На одном из рисунков изображен график функции . Укажите номер этого рисунка.

 

1)p1x2m2xp3.eps

2)p1x2p2xp3.eps
3)m1x2p2xm3.eps

4)m1x2m2xm3.eps

Ответ:

12
Задание 12 № 353181

Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s = nl, где n — число шагов, l — длина шага. Какое расстояние прошёл человек, если l = 50 см, n = 1100? Ответ выразите в километрах.


Ответ:

13
Задание 13 № 338523

На каком из рисунков изображено решение неравенства

В ответе укажите номер правильного варианта.

 

 

1) 1

2) 2

3) 3

4) 4


Ответ:

14
Задание 14 № 394464

За изготовление и установку нижнего железобетонного кольца колодца заплатили 234 рубля, а за каждое следующее кольцо платили на 18 рублей меньше, чем за предыдущее. Кроме того, по окончании работы была выплачена премия 360 рублей. Средняя стоимость изготовления и установки одного кольца с учетом премии оказалась равна 202 рубля. Сколько колец было установлено?


Ответ:

15
Задание 15 № 132779

Сумма трех углов выпуклого четырехугольника равна 300°. Найдите четвертый угол. Ответ дайте в градусах.


Ответ:

16
Задание 16 № 314811

Точка О — центр окружности, ∠AOB = 84° (см. рисунок). Найдите величину угла ACB (в градусах).


Ответ:

17
Задание 17 № 333013

Основания трапеции равны 1 и 11. Найдите бóльший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.


Ответ:

18
Задание 18 № 311914

Найдите синус острого угла трапеции, изображённой на рисунке.


Ответ:

19
Задание 19 № 341499

Какие из следующих утверждений верны?

 

1) Один из углов треугольника всегда не превышает 60 градусов.

2) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.

3) Все диаметры окружности равны между собой.

 

Если утверждений несколько, запишите их номера в порядке возрастания.


Ответ:

20
Задание 20 № 338566

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

21
Задание 21 № 338584

Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 40 минут раньше, чем велосипедист приехал в А, а встретились они через 15 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

22
Задание 22 № 338160

Постройте график функции и определите, при каких значениях прямая имеет с графиком ровно две общие точки.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

23
Задание 23 № 339611

Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите BC, если AB = 34.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

24
Задание 24 № 340104

Через точку O пересечения диагоналей параллелограмма ABCD проведена прямая, пересекающая стороны AB и CD в точках P и T соответственно. Докажите, что BP = DT.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

25
Задание 25 № 353377

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:2, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 16.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.