математика
Математика
Информатика
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Вариант № 10705693

Ответами к заданиям 1–20 являются цифра, число или последовательность цифр. Если ответом является последовательность цифр, запишите её без пробелов, запятых и других дополнительных символов. Дробную часть от целой отделяйте запятой. Единицы измерений писать не нужно.

Если ва­ри­ант задан учителем, вы мо­же­те вписать от­ве­ты на за­да­ния части С или за­гру­зить их в си­сте­му в одном из гра­фи­че­ских форматов. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний части В и смо­жет оце­нить за­гру­жен­ные от­ве­ты к части С. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей статистике.



Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 287932

Расположите в по­ряд­ке воз­рас­та­ния числа 0,1439; 1,3; 0,14.

 

1) 0,1439; 0,14; 1,32) 1,3; 0,14; 0,14393) 0,1439; 1,3; 0,144) 0,14; 0,1439; 1,3

Ответ:

2
Задание 2 № 348710

В таблице даны результаты олимпиад по математике и биологии в 9 «А» классе.

 

Номер ученикаБалл по математике Балл по биологии
50054955
50069856
50113036
50159650
50183787
50205874
50257752
50279468
50297266
50327283
50417635
50428345
50439579
50487863
50549941

 

Похвальные грамоты дают тем школьникам, у кого суммарный балл по двум олимпиадам больше 130 или хотя бы по одному предмету набрано не меньше 70 баллов. Сколько человек из 9 «А», набравших меньше 70 баллов по математике, получат похвальные грамоты?

1) 1

2) 3

3) 4

4) 2


Ответ:

3
Задание 3 № 314155

Одна из точек, от­ме­чен­ных на ко­ор­ди­нат­ной пря­мой, со­от­вет­ству­ет числу Какая это точка?

 

1) точка M

2) точка N

3) точка P

4) точка Q


Ответ:

4
Задание 4 № 337271

Найдите зна­че­ние вы­ра­же­ния

В ответе укажите номер правильного варианта.

 

1)

2)

3)

4)


Ответ:

5
Задание 5 № 322037

Ан­дрей и Иван со­рев­но­ва­лись в 50-мет­ро­вом бас­сей­не на ди­стан­ции 100 м. Гра­фи­ки их за­плы­вов по­ка­за­ны на ри­сун­ке. По го­ри­зон­таль­ной оси от­ло­же­но время, а по вер­ти­каль­ной – рас­сто­я­ние плов­ца от стар­та. Кто быст­рее про­плыл первую по­ло­ви­ну ди­стан­ции? В от­ве­те за­пи­ши­те, на сколь­ко се­кунд быст­рее он про­плыл первую по­ло­ви­ну ди­стан­ции.

 


Ответ:

6
Задание 6 № 311907

Решите урав­не­ние −2(5 − 3x) = 7x + 3.


Ответ:

7
Задание 7 № 317941

На пред­при­я­тии ра­бо­та­ло 240 со­труд­ни­ков. После мо­дер­ни­за­ции про­из­вод­ства их число со­кра­ти­лось до 192. На сколь­ко про­цен­тов со­кра­ти­лось число со­труд­ни­ков пред­при­я­тия?


Ответ:

8
Задание 8 № 316327

На диа­грам­ме по­ка­за­но со­дер­жа­ние пи­та­тель­ных ве­ществ в какао, мо­лоч­ном шоколаде, фа­со­ли и сушёных белых грибах. Опре­де­ли­те по диаграмме, в каком про­дук­те со­дер­жа­ние жиров на­хо­дит­ся в пре­де­лах от 15% до 25%.

 

 

*К про­че­му от­но­сят­ся вода, ви­та­ми­ны и ми­не­раль­ные вещества.

 

1) какао

2) шоколад

3) фа­соль

4) грибы


Ответ:

9
Задание 9 № 316291

Гена, Юра, Филипп, Вадим и Таня бро­си­ли жре­бий — кому на­чи­нать игру. Най­ди­те ве­ро­ят­ность того, что на­чи­нать игру долж­на будет Таня.


Ответ:

10
Задание 10 № 314707

На ри­сун­ке изоб­ражён гра­фик квад­ра­тич­ной функ­ции y = f(x).

Какие из сле­ду­ю­щих утвер­жде­ний о дан­ной функ­ции не­вер­ны? За­пи­ши­те их но­ме­ра.

 

1) Функ­ция убы­ва­ет на про­ме­жут­ке [−1; +∞).

2) f(−3)<f(0).

3) f(x)<0 при −4<x<2.


Ответ:

11
Задание 11 № 314425

Най­ди­те сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии –7,2; –6,9; …


Ответ:

12
Задание 12 № 316281

Найдите зна­че­ние вы­ра­же­ния при а = 2.


Ответ:

13
Задание 13 № 338296

Закон Менделеева-Клапейрона можно за­пи­сать в виде PV = νRT, где P — дав­ле­ние (в паскалях), V — объём (в м3), ν — ко­ли­че­ство ве­ще­ства (в молях), T — тем­пе­ра­ту­ра (в гра­ду­сах Кельвина), а R — уни­вер­саль­ная га­зо­вая постоянная, рав­ная 8,31 Дж/(К⋅моль). Поль­зу­ясь этой формулой, най­ди­те тем­пе­ра­ту­ру T (в гра­ду­сах Кельвина), если ν = 68,2 моль, P = 37 782,8 Па, V = 6 м3.


Ответ:

14
Задание 14 № 338677

При каких зна­че­ни­ях x зна­че­ние вы­ра­же­ния 6x − 2 боль­ше зна­че­ния вы­ра­же­ния 7x + 8?

В ответе укажите номер правильного варианта.

 

1) x > − 10

2) x < − 10

3) x > − 6

4) x < − 6


Ответ:

15
Задание 15 № 132753

Мальчик и девочка, рас­став­шись на перекрестке, пошли по вза­им­но перпендикулярным дорогам, маль­чик со ско­ро­стью 4 км/ч, де­воч­ка — 3 км/ч. Какое рас­сто­я­ние (в километрах) будет между ними через 30 минут?


Ответ:

16
Задание 16 № 132776

Сумма двух углов рав­но­бед­рен­ной тра­пе­ции равна 140°. Най­ди­те боль­ший угол трапеции. Ответ дайте в градусах.


Ответ:

17
Задание 17 № 351829

Отрезок AB = 18 ка­са­ет­ся окруж­но­сти ра­ди­у­са 80 с цен­тром O в точке B. Окруж­ность пе­ре­се­ка­ет от­ре­зок AO в точке D. Най­ди­те AD.


Ответ:

18
Задание 18 № 333145

Тангенс остро­го угла пря­мо­уголь­ной тра­пе­ции равен . Най­ди­те её боль­шее основание, если мень­шее ос­но­ва­ние равно вы­со­те и равно 55.


Ответ:

19
Задание 19 № 311485

На квад­рат­ной сетке изображён угол  . Най­ди­те  .


Ответ:

20
Задание 20 № 314946

Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

 

1) На плос­ко­сти су­ще­ству­ет един­ствен­ная точка, рав­но­удалённая от кон­цов от­рез­ка.

2) Цен­тром впи­сан­ной в тре­уголь­ник окруж­но­сти яв­ля­ет­ся точка пе­ре­се­че­ния его бис­сек­трис.

3) Если ги­по­те­ну­за и ост­рый угол од­но­го пря­мо­уголь­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны ги­по­те­ну­зе и углу дру­го­го пря­мо­уголь­но­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки равны.


Ответ:

21
Задание 21 № 339057

Решите уравнение


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

22
Задание 22 № 338972

Два ав­то­мо­би­ля од­но­вре­мен­но от­прав­ля­ют­ся в 240-ки­ло­мет­ро­вый про­бег. Пер­вый едет со ско­ро­стью, на 20 км/ч боль­шей, чем вто­рой, и при­бы­ва­ет к фи­ни­шу на 1 ч рань­ше вто­ро­го. Най­ди­те ско­рость пер­во­го ав­то­мо­би­ля.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

23
Задание 23 № 333024

Постройте гра­фик функции

 

 

и определите, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно две общие точки.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

24
Задание 24 № 333130

Биссектрисы углов A и B при бо­ко­вой сто­ро­не AB тра­пе­ции ABCD пе­ре­се­ка­ют­ся в точке F. Най­ди­те AB, если AF = 24, BF = 10.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

25
Задание 25 № 311665

Докажите, что у рав­ных тре­уголь­ни­ков и биссектрисы, проведённые из вер­ши­ны и , равны.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

26
Задание 26 № 339523

В тре­уголь­ни­ке ABC бис­сек­три­са BE и ме­ди­а­на AD пер­пен­ди­ку­ляр­ны и имеют оди­на­ко­вую длину, рав­ную 60. Най­ди­те стороны тре­уголь­ни­ка ABC.


Решения заданий части С не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения; если работа задана учителем, она будет ему отправлена.